Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Magnetorheological Door Check

2001-03-05
2001-01-0619
Several shortcomings of mechanical door checks are overcome using a magnetorheological damper. Because the damper is electrically actuated, it can check in any desired position. The logical decision to activate or release the door check can be made either by passive circuitry based on input signals from switches attached to door handles or under microprocessor control, in which case the decision can take into account a variety of unconventional input factors, including the magnitude of the force applied to the door, the rate of change of the applied force, and the angle of door opening. With the addition of an appropriate proximity sensor, the controllable damper can prevent the door from inadvertently hitting a nearby obstacle. Details of the damper mechanism are described, and several implemented control strategies, both passive and microprocessor based, are discussed.
Technical Paper

A New FEA Method for the Evaluation of a Body Joint

2001-03-05
2001-01-0758
A finite element analysis method has been developed to assess the design of an automobile body joint. The concept of the coefficient of joint stiffness and the force distribution ratio are proposed accordingly. The coefficient of joint stiffness reveals whether a joint is stiff enough compared to its joining components. In addition, these parameters can be used to estimate the potential and the effectiveness for any further improvement of the joint design. The modeling and analysis of the proposed process are robust. The coefficient of joint stiffness could be further developed to serve as the joint design target.
Technical Paper

Correlating Stressed Environmental Testing of Structural Composites to Service

2001-03-05
2001-01-0094
A compact in-situ tensile stress fixture was designed for the study of the combined effects of stress and automotive environments on structural glass fiber-reinforced composite materials. With this fixture, a standardized 300 hour laboratory screening test was developed to compare the residual property loss of composite materials due to concurrent exposure to stress and environment. It is of great importance that the data gathered in the laboratory have correlation to on-vehicle (in-service) performance, and that both lab and real world data be taken with a test system (in-situ test fixtures) capable of providing accurate and consistent results under either test condition.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

2001-04-30
2001-01-1505
Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

Operational Spindle Load Estimation Methodology for Road NVH Applications

2001-04-30
2001-01-1606
A new experimental methodology has been developed to quantify spindle loads of a vehicle under actual operational conditions. The methodology applies an indirect six degree-of-freedom (6 DOF) frequency response function (FRF) measurement technique to obtain three translation/force and three rotation/moment FRFs of the suspension system of the vehicle. The Inverse Frequency Response Function (IFRF) method estimates the spindle loads under operational conditions. The feasibility and applicability of the developed methodology for vehicle road NVH applications was experimentally demonstrated. The results show that the methodology provides accurate spindle load estimation over a broad frequency range. This methodology can be used for benchmarking and target setting of spindle loads to achieve desired road NVH performance as well as for diagnosing root causes in problem solving applications.
Technical Paper

Steering Wheel Vibration Diagnosis

2001-04-30
2001-01-1607
The objective of this project was to develop a methodology for the diagnosis of vibrations of the vehicle's steering wheel. This paper will describe an attempt at developing a systematic approach for describing the vibrations felt, what the sources might be, and how various steering system parameters might affect the vibrations.
Technical Paper

Robust Analysis of Vehicle Suspension System Uncertainty

2001-04-30
2001-01-1582
The paper presents the systematic approaches toward robust stability analysis of H2/H∞ controlled active suspension systems. The computational algorithms for the structured singular value μ are the main features of the work with an emphasis on quantifying the effects of uncertainty of the systems. The representation of vehicle parameter uncertainties is given in detail. The robustness test is subsequently done based on a quarter vehicle model. The results have showed that the H∞ controller is the best one on both robust stability and robust performance.
Technical Paper

Engine Excitation Decomposition Methods and V Engine Results

2001-04-30
2001-01-1595
Engine excitation forces have been studied in the past using one of two methods; a lumped sum or a totally distributed approach. The lumped sum approach gives the well-understood engine inherent unbalance and the totally distributed approach is used in engine CAE models to determine the overall engine response. The approach that will be described in this paper identifies an intermediate level of sophistication. The methodology implemented considers single cylinder forces on the engine block, piston side thrust and main bearing forces, and decomposes them into their order content. The forces are then phased and geometrically distributed appropriately for each cylinder and then each order is analyzed relative to know distributions that are NVH concerns, V-block breathing, block side wall breathing, and block lateral and vertical bending.
Technical Paper

Analysis of Instabilities and Power Flow in Brake Systems with Coupled Rotor Modes

2001-04-30
2001-01-1602
Recent investigations by others have indicated that the dynamic response of automotive brake rotors in the squeal frequency range involves the classic flexural modes as well as in-plane motion. While the latter set creates primarily in-plane displacements, there is coupling to transverse displacements that might produce vibrational instabilities. This question is investigated here by analyzing a modal model that includes two modes of the rotor and two modes of the pad and caliper assembly. Coupling between in-plane and transverse displacements is explicitly controlled. Results from this model indicate that the coupling does create vibrational instabilities. The instabilities, whose frequencies are in the squeal range, are characterized by power flow through the transverse motion of the rotor.
Technical Paper

Finite element simulation of drive shaft in truck/SUV frontal crash

2001-06-04
2001-06-0106
Drive shaft modelling effects frontal crash finite element simulation. A 35 mph rigid barrier impact of a body on frame SUV with an one piece drive shaft and a unibody SUV with a two piece drive shaft have been studied and simulated using finite element analyses. In the model, the drive shaft can take significant load in frontal impact crash. Assumptions regarding the drive shaft model can change the predicted engine motion in the simulation. This change influences the rocker @ B-pillar deceleration. Two modelling methods have been investigated in this study considering both joint mechanisms and material failure in dynamic impact. Model parameters for joint behavior and failure should be determined from vehicle design information and component testing. A body on frame SUV FEA model has been used to validate the drive shaft modeling technique by comparing the simulation results with crash test data.
Technical Paper

Catalytic Converter Design Incorporating Dynamic Can Deformation

2002-05-06
2002-01-1751
A stochastic simulation based on the Monte-Carlo method was developed to re-target gap bulk density (GBD) in ceramic catalytic converters. The combined effect of manufacturing tolerances, shell spring back and thermal expansion was analyzed by this model. Shell spring back during the canning process was calculated using Finite Element Analysis (FEA). Thermal shell expansion was obtained using can deformation data from the Key-Life Test (KLT). An example of optimized GBD that provides a robust and manufacturable design is also presented.
Technical Paper

Fuel Economy Benefit of Cylinder Deactivation - Sensitivity to Vehicle Application and Operating Constraints

2001-09-24
2001-01-3591
A Variable Displacement Engine (VDE) improves fuel economy by deactivating half the cylinders at light load. The actual fuel economy benefit attained in the vehicle depends on how often cylinders can be deactivated, which is a function of test cycle, engine size, and vehicle weight. In practice, cylinder deactivation will also be constrained by NVH (noise, vibration, and harshness). This paper presents fuel economy projections for VDE in several different engine and vehicle applications. Sensitivity to NVH considerations is quantified by calculating fuel economy with and without cylinder deactivation in various operating modes: idle, low engine speed, 1st and 2nd gear, and warm-up after cold start. The effects of lug limits and calibration hysteresis are also presented.
Technical Paper

Development of a Finite Element Analysis Tool for Fixture Design Integrity Verification and Optimization

2002-03-04
2002-01-0132
Machining fixtures are used to locate and constrain a workpiece during a machining operation. To ensure that the workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped. Minimizing workpiece and fixture tooling deflections due to clamping and cutting forces in machining is critical to the machining accuracy. An ideal fixture design maximizes locating accuracy and workpiece stability, while minimizing displacements. The purpose of this research is to develop a method for modeling workpiece boundary conditions and applied loads during a machining process, analyze modular fixture tool contact area deformation and optimize support locations, using finite element analysis (FEA). The workpiece boundary conditions are defined by locators and clamps. The locators are placed in a 3-2-1 fixture configuration, constraining all degrees of freedom of the workpiece and are modeled using linear spring-gap elements.
Technical Paper

An Ultra-Light Thin Sliding Door Design - A Multi-Product Multi-Material Solution

2002-03-04
2002-01-0391
Sliding door designs are applied to rear side doors on vans and other large vehicles with a trend towards dual sliding doors with power operation. It is beneficial for the vehicle user to reduce the weight of and space occupied by these doors. Alcoa, in conjunction with Ford, has developed a multi-product, multi-material-based solution, which significantly reduces the cost of an aluminum sliding door and provides both consumer delight and stamping-assembly plant benefits. The design was successfully demonstrated through a concept readiness/technology demonstration program.
Technical Paper

Hybrid Powertrain with an Engine-Disconnecting Clutch

2002-03-04
2002-01-0930
Several types of hybrid-electric vehicles have been developed at Ford Research Laboratory. Among the parallel hybrid systems with a single electric motor, two types were studied. In the first type, the electric motor was attached directly to the crankshaft (mild hybrid) [1], to enable the engine start-stop and regeneration functions. In the second type (full hybrid) the electric motor was connected to the engine through the use of a clutch to allow electric launch of the vehicle and pure electric driving at low speeds. The full hybrid powertrain described in this paper uses a more powerful electric motor for enhanced regenerative braking and engine power assist. An engine-disconnecting clutch saves energy during both the electric propulsion and during vehicle braking. When the clutch is disengaged the engine is shut-off, which eliminates the energy otherwise spent on motoring the engine during electric propulsion.
Technical Paper

Understanding the Interaction Between Passive Four Wheel Drive and Stability Control Systems

2002-03-04
2002-01-1047
The purpose of this paper is to describe and define the interaction between a brake based stability control system and a passive coupler (viscous coupling unit) inside the transfer case of a Four-Wheel Drive (4WD) vehicle. This paper will focus on the driveline system and the impact that a stability control system can have on it. It will provide understanding of torque transfer on 4WD vehicles that are equipped with a brake based stability control system and use this knowledge to recommend ways to reduce the undesirable torque transfer interaction between the two systems. These recommendations can be readily applied to future 4WD/AWD vehicles to improve compatibility between the two systems.
Technical Paper

Using Variable Reluctance Sensors for Differential Odometer Applications

1991-10-01
912788
Applying a variable reluctance sensor to a differential odometer application requires special considerations. Due to widespread use in anti-lock brake systems and the need for cost effective designs, variable reluctance sensors have advantages over more expensive active sensors. Unfortunately, both mechanical and electrical parameters can adversely affect the output of a variable reluctance sensor. The output signal varies with the rate of change of the flux, mechanical spacing and magnetic source variation. At low vehicle speeds the output signal, which is a function of the rate of change of the flux, tends to approach zero and signal-to-noise ratios become significant. Since changes in vehicle direction typically occur at lower speeds, differential odometers require good low speed performance. In addition to speed, differential odometers rely on two sensors, therefore sensor variation must also be compensated for.
Technical Paper

Finite Element Vibration Studies of As-Installed Power Steering Pumps

2003-05-05
2003-01-1671
Pump whine as well as other NVH issues related to power steering system can become customer concerns at the vehicle level. In order to avoid that, proposed treatment of the pump structure and its installation on the engine should be performed. This is particularly important because most vane pumps have a wide range of excitation that can reach 1000 Hz (30th order @ 6000 rpm). This requires maximizing the ‘as installed’ frequencies of the pump to avoid coincidence with the engine and other FEAD harmonics.
Technical Paper

Eliminating Piston Slap through a Design for Robustness CAE Approach

2003-05-05
2003-01-1728
Piston slap is a problem that plagues many engines. One of the most difficult aspects of designing to eliminate piston slap is that slight differences in operating conditions and in part geometries from build to build can create large differences in the magnitude of piston slap. In this paper we will describe a design for robustness CAE approach to eliminating piston slap. This approach considers the variations of the significant control factors in the design, e.g. piston pin offset, piston skirt design, etc. as well as the variation in the noise factors the system is subjected to, e.g. assembly clearance, skirt collapse, peak cylinder pressure, cylinder pressure rise rate, and location of peak cylinder pressure. Using analytical knowledge about how these various factors impact the generation of piston slap, a piston design for low levels of piston slap can be determined that is robust to the various noise factors.
Technical Paper

The Development and Application of Solid State Relays for Automotive Applications

1992-02-01
920540
The utilization of electro-mechanical relays in traditional automotive applications such as power door lock systems and vehicle lighting has been easily justified on the basis of performance, cost and reliability. However, with the advance of new vehicle systems, we find that new standards for the basic power switch must be established. When the control of anti-lock brake or suspension systems is to be considered, standards for performance and reliability must rise. This paper will examine a high current Solid State Relay (SSR) which has been developed for application within critical automotive systems. The design approach, technology utilized, and operating characteristics, as well as application justification will be discussed.
X